Regulation of the Demographic Structure in Isomorphic Biphasic Life Cycles at the Spatial Fine Scale
نویسندگان
چکیده
Isomorphic biphasic algal life cycles often occur in the environment at ploidy abundance ratios (Haploid:Diploid) different from 1. Its spatial variability occurs within populations related to intertidal height and hydrodynamic stress, possibly reflecting the niche partitioning driven by their diverging adaptation to the environment argued necessary for their prevalence (evolutionary stability). Demographic models based in matrix algebra were developed to investigate which vital rates may efficiently generate an H:D variability at a fine spatial resolution. It was also taken into account time variation and type of life strategy. Ploidy dissimilarities in fecundity rates set an H:D spatial structure miss-fitting the ploidy fitness ratio. The same happened with ploidy dissimilarities in ramet growth whenever reproductive output dominated the population demography. Only through ploidy dissimilarities in looping rates (stasis, breakage and clonal growth) did the life cycle respond to a spatially heterogeneous environment efficiently creating a niche partition. Marginal locations were more sensitive than central locations. Related results have been obtained experimentally and numerically for widely different life cycles from the plant and animal kingdoms. Spore dispersal smoothed the effects of ploidy dissimilarities in fertility and enhanced the effects of ploidy dissimilarities looping rates. Ploidy dissimilarities in spore dispersal could also create the necessary niche partition, both over the space and time dimensions, even in spatial homogeneous environments and without the need for conditional differentiation of the ramets. Fine scale spatial variability may be the key for the prevalence of isomorphic biphasic life cycles, which has been neglected so far.
منابع مشابه
Ecology and the Evolution of Biphasic Life Cycles.
Sexual eukaryotes undergo an alternation between haploid and diploid nuclear phases. In some organisms, both the haploid and diploid phases undergo somatic development and exist as independent entities. Despite recent attention, the mechanisms by which such biphasic life cycles evolve and persist remain obscure. One explanation that has received little theoretical attention is that haploid-dipl...
متن کاملFunctional properties of the isomorphic biphasic algal life cycle.
Many species of marine algae have life cycles that involve multiple separate, free-living phases that frequently differ in ploidy levels. These complex life cycles have received increasing scientific attention over the past few decades, due to their usefulness for both ecological and evolutionary studies. I present a synthesis of our current knowledge of the ecological functioning and evolution...
متن کاملLinear-In-The-Parameters Oblique Least Squares (LOLS) Provides More Accurate Estimates of Density-Dependent Survival
Survival is a fundamental demographic component and the importance of its accurate estimation goes beyond the traditional estimation of life expectancy. The evolutionary stability of isomorphic biphasic life-cycles and the occurrence of its different ploidy phases at uneven abundances are hypothesized to be driven by differences in survival rates between haploids and diploids. We monitored Grac...
متن کاملA new 2D block ordering system for wavelet-based multi-resolution up-scaling
A complete and accurate analysis of the complex spatial structure of heterogeneous hydrocarbon reservoirs requires detailed geological models, i.e. fine resolution models. Due to the high computational cost of simulating such models, single resolution up-scaling techniques are commonly used to reduce the volume of the simulated models at the expense of losing the precision. Several multi-scale ...
متن کاملPredicting working Memory (Visual-Spatial) Based on Motor Skills and Self-Regulation from the perspective of Barkly theory in Dysgraphia Children 8-12 Years old
Introduction: Children with dysgraphia have some problems with motor skills and self-regulation. The aim of this study was to predict working memory (visual-spatial) based on motor skills and self-regulation from the perspective of Barkley's theory in children with dysgraphia aged 8-12 years old. Methods: This study was a correlational study. The study sample consisted of 150 male students who ...
متن کامل